Functions/Subroutines | |
subroutine | mxm (a, n1, b, n2, c, n3) |
Compute matrix-matrix product C = A*B for contiguously packed matrices A,B, and C. More... | |
subroutine | local_grad3 (ur, us, ut, u, N, e, D, Dt) |
Uses mxm() to compute gradient of 3D arrays. More... | |
subroutine | local_grad2 (ur, us, u, N, e, D, Dt) |
Uses mxm() to compute gradient of 2D arrays. More... | |
subroutine | lambda2 (l2) |
Generate Lambda-2 vortex of Jeong & Hussein, JFM '95. More... | |
subroutine | comp_gije (gije, u, v, w, e) |
Compute the gradient tensor G_ij := du_i/du_j, for element e. More... | |
subroutine | comp_sije (gije) |
Compute symmetric part of a tensor gije for element. Does not call any other subroutine, but simply evaluates: \[ G_{ij} = \frac{1}{2}(G_{ij} + G_{ji}) \] \[ G_{ji} = G_{ij} \] . More... | |
subroutine comp_gije | ( | real, dimension(lx1*ly1*lz1,ldim,ldim) | gije, |
real, dimension (lx1*ly1*lz1) | u, | ||
real, dimension (lx1*ly1*lz1) | v, | ||
real, dimension (lx1*ly1*lz1) | w, | ||
integer | e | ||
) |
Compute the gradient tensor G_ij := du_i/du_j, for element e.
Compute symmetric part of a tensor gije for element. Does not call any other subroutine, but simply evaluates:
\[ G_{ij} = \frac{1}{2}(G_{ij} + G_{ji}) \]
\[ G_{ji} = G_{ij} \]
.
[in,out] | gije | a 3D array whose first index iterates over all points in an element |
Generate Lambda-2 vortex of Jeong & Hussein, JFM '95.
subroutine local_grad2 | ( | real, dimension(0:n,0:n) | ur, |
real, dimension(0:n,0:n) | us, | ||
real, dimension (0:n,0:n,1) | u, | ||
N, | |||
integer | e, | ||
real, dimension (0:n,0:n) | D, | ||
real, dimension(0:n,0:n) | Dt | ||
) |
subroutine local_grad3 | ( | real, dimension(0:n,0:n,0:n) | ur, |
real, dimension(0:n,0:n,0:n) | us, | ||
real, dimension(0:n,0:n,0:n) | ut, | ||
real, dimension (0:n,0:n,0:n,1) | u, | ||
N, | |||
integer | e, | ||
real, dimension (0:n,0:n) | D, | ||
real, dimension(0:n,0:n) | Dt | ||
) |
subroutine mxm | ( | real, dimension(n1,n2) | a, |
n1, | |||
real, dimension(n2,n3) | b, | ||
n2, | |||
real, dimension(n1,n3) | c, | ||
n3 | |||
) |
Compute matrix-matrix product C = A*B for contiguously packed matrices A,B, and C.